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The bulk of the research performed in the past two years on this
contract was on the solution in closed form of second order ODEs. This was done
largely by Professor Shunro Watanabe while he visited us from Japan. A paper on

this work was presented on July, 1984 in Cambridge, England and is attached.

As the paper indicates, Watanabe's approach, which is based on
transforming most equations into a variant of Riemannian functions, is very
successful. It solves over 90% of all second order equations in Kamke's famous
book. If one eliminates differential equations with general coefficients (e.g.,
f(x)), then it solves over 96% of the equations. Watanabe's paper explains the

types of problems that remained unsolved.

We should note that Watanabe's program is more general than Kamke's

book. It is now available as a program in MACSYMA.

We are very pleased with our Air Force support over the years. With
this support we were able to complete a PhD thesis by Zippel on the GCD
algorithm. This pathbreaking thesis provided a probabilistic algorithm that is
the best general purpose GCD algorithm. Barry Trager has almost completed his
PhD thesis on algebraic integration. This thesis presents a very efficient
algorithm using much machinery from algebraic geometry. When it is completed
this fall, we expect to submit it to the Air Force as well. Finally, we were
able to sponsor Prof. Watanabe's work. On the whole, our association with AFQSR

has been outstanding. We hope to continue it at some future point.




AN DPTIENT TOWARD A GENZRAL QUADRATURZ FOR
STOOND ORSTF LINTAR ORDINARY DIFFERENTIAL EQUATIONS
EY SYMBOLIC CQMPUTATION

Shunro Watanabe
Depa——ent of Mathematics, Tsuda College
xodaira, Tokyo 187, Japan

1. “hy iment?

The second order l:naar ordinary differential egquations (L ODE) is the -ost
important class un ODE. Tha Slassical mathematical theories for L QDE had ceveloped
in 19th and early 20th ces=uvies. Many mathematicians made the theories and methods
o find and solve licuvillian or algehraic solutions for L ODZ. However it seems ™
us they did not offer any -=ieral procedure that can solve these equations. ((1))

n the other hand, &=iny the last 15 ysars many peccle tried 0 write srograms
chat can solve the eqma—xxxs in L QDE Yy Symtolic Camputation. for example, J.Golden
Z.lafferty and others wrote an solver for ODE on MACSYMA, called ODE, which is a
collection of alsorithcs imcluding Y.Avgoustis' simplification program for hypergeo—
metric equations and P.Scirist's solver far Riccati's equations with coefficients ia
Q(x), rational functiams &f x. ({2], (3])

Recently two papers zzoeared. They offered jyemeral alserrisizng for these equa=
=ions. J.Kovacic's aloorizm can f£ind and solve all the licuvillian and aljebraic
solutions for second ardar L OQOE with coefficients in C(x). 3.Saunders isplementad
Kovacic's algorithm. ((4]) ‘.Singer's algorithm can find and solve all the licuvi-
1lian and algekraic solutixs far the n-th order I, OUE with efficients in F, a
finite algetraic extensice of Q(x). ((5))

Sven after the aposa—ance of these two papers, if e wants X isplersat a sol-
ver for a large class of acmaticns, the following direction seems to be still valua-
ble: “Given a differencial ecmation whose form ar structure is 2ot ismediately
recognizable, one looks <o ransformations which will convert the given problem
into e »hich is known.® {(§]) Iz this paper, L shall show an experinemt tovard a
leneral juadrature for secxd order L QUE with coefficients in el ameneary finctions.

I rote a prograa wizhin the classical knowledge o QUE, ((1),[8),(9]) It
consists of some 1400 lines by MACSYMA language and I tested this program on FDP-10
using 542 equations in Kasike's table. In these 542 equaticns we can use 492 equa-
21008 as meaningful test data. ((7)) Our program solved 473 equations. It means our
solvable rate is more thas 96%. The camputaion times are alrost between 10 seconds
xd 50 seconds. In this sxperiomnt, I found an essential errce (2-291th equatian)
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and Other errors (2=125c(c) and 2=187a) in Kamke's table. Also our program solved a
few equations which are essentially different equations from those in Kamke's table.
I printed all the processes of calculations for the 473 equations and cthers.

2. The stratesv for solvinc.

Our approach for solving Kamke's equations is to find a proper transformation
of variables which will convert a given equation to a nore simple ejuation. Usually
it is very difficult to determine which equation is more simple. HAowever we can
guess as follows : if the coefficients of an equation have exp(x?) and the coeffici-
ents of another equaticn have only exp(x), the latter equation must be fore sisple
than the former equation. When all the coefficients of an egquation are raticnal
functions of x we may think that the degree of the difficulties for solving increa~
ses as the mumber or the ranks of the singular points increase. Thus we had roush
criterions for simplicity of equations. '

Then how can we find proper transformations? I used only cne technique for our
program. First we will recognize the pattern for the given equation. Here I mean
the pattern not cnly as external form but also as a kind of characterization using
the informations obtained by calculation. Then we will get several candidate trans-
formations that have a few undetermined parameters. We will try to cetermine these
parameters by applying the transfOrmations to a given equation. Therefore we used
the following stratecy for our program.

step 1. If the equaticnm comtains elementary transcencdental functicns and if the
arguments in the deepest parts of it have a cammon rational function ki(x)
that is not x then we Ty t© remove k(x) by the transformation t=k(x).
If we success then go tO step 5, if we fail then go to step 4.

step 2. If the equation comtains elementary transcendental functions and if all
the arguments of these functions are x then we try t© remove these
functions by the transformation t=e(x), where e(x) is cne of the trans-
cendental functicns.
If we success then J0 tO step 5, if we fail then go to step 4.

If all the —cefiizients Of the equation are ratiocnal functicns of x and
parameters <hen W count all the sinjular points and calculate their
ranks. If the eguation has only three regular singular points cr it has
one rejular singular point and one irveqular singular point of rark one
or it is the easily solvable equation then we solve it using theories.
If the equation is a prototype then we say so. If we success then 30 0
step o.

tep 3.
e ———

step 4. e try to find the proper transformations of the form

usf (X)y, uw', or t=g(x)
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where £(x) and g(x) are elemenzary or algezraic function Of x. Often
f(x) and g(x) have undetermined parameters, and we rust determine them
so as the transformation can sumplify the equation. If we Iail we canot

solve it.
step 5. We store this successful transiormation of variable to the top of a
empe——
stack. We replace the new variables u or t inm the transformed equation
by y or x and we use it as new ejuation. Go to step 1.

6. We calculate the solution cf =he first equation £rom the series of
step
sransformations on the stask and the solution of the last eguation.

‘Yhen <& wrote Our program acsoriins o the alove stratecy, we used the folloa-
ing loose princiles : 1) Ye should srepare enoush transtoraations for solving our
aquations. 3ut it is better 0 use sattesn matcnings in small numders. 2) We should
ase hack-tracking technigue only undar the restricted condition. At least the nunoer
of trials in an envirorment .ust de wall.

3. Details cn the transformations.

Let us consider step 2 in our s=ategy. When <& find risonometric functions
for a given equation, we try to racove these functions {ram it using t=sin(x) or t=
0s({x). “hen cne transformation succeeded and another Tansicrmation failed, ~e can
ase the succeeded one. “hen both of them succeeded, we must select the ane which will
oring us more simple equation. vhen moth Of them failed, we cannot remove “rigonamet-
ric functions from it.

When we find hyperbolic functicns for a given equaticn, we try %O remove these
functions fram it using t=sinh(x) or t=osh(x). We can determine which transforma=~
tion is proper or not using the same procedure as the case of trisonometric func=
tions. “hen we find exponential or logarithmic functions for a given equation, we
try to remove tham from it using t=e* a& t=log(x) or t=x(log(x)=1).

Now let us cunsider step 4 in o strategy. first e Ty o siaplify Lt using
tn’. For this purpose we try fO0 feWTite our equation to the form x2y’ '+ x£(xF)y®
+g(x°)y=0. “here r is an undetermined parameter. When r is 2 or 3, or =1 or 1/2,
it is not so Aiffioult O determine 3. Nt when r is b @ b xx b+, where b is an
another symbol, it is not so easy to determine r.

Then we try to simplify it using y=exp(ax¥)u, where a and r are two undetermined
sarameters. By this transformation we can expect two directions for simplification.
One is %0 reduce the rank of the irreqular sinqularity, and another is o transform
aur eqmtion 0 easily solvable eguatic as ¥ *+f(x}y'=0. TO reduce the rank e can
use the value of rank as r. But to transform Our equation to y'’+f(x)y’=0 we mst
look for the value of r around the value of rank. Samtimes we go through this step
o Or three timss. Then we must determine the value r under the condition that the
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value of the successor must be less than the value Of the predecessor.

In this case we have one difficultiy. The undetermined parameter 'a'in exp(axt)
satisfies a quadratic equation. SO we have two values for candidate. The two trans-
formed equations corresponding t these values have often same simplicity. Therefore
the first version of our program asks for us which value is preferable. Of course it
is for the memory limitation's sake.

After this transformaticn, we still try to simplify our equation using y=(x-a)k
u, where a and k are undetermined parameters. 3y this transformation we can expect
two directions far simplification. One is to remove an apparent singular point from
the equation. For this purpose we must select an apparent singular point as 'a' and
one of the characteristic roots as k. It is not necessary to decide whether a singu-
lar point is apparent Or not, beca:se the possible number of a and k is finite.

Another direction is o transforn the equation to y''+f(x)y'=0. For this purpo-
se it is nOt necessary to select a singular point for a. These processes are a kind
of pattern matchings and their applications for transformations. shen we Ty O use
uore explicit patterns.

4. "hat are our patterns?

In cur problem a data Or an esuation COrTesponds o a pProgram Whish can soive
the ecquaticn. NOw we have 542 relevact equations in Kamke's table. Therefore if I
wrote 542 programs, then the collection Of these programs is a solver for Xaske's
ejuations. However it is too big t© be a practical solver. Then we try to find simi-
lar parts in this huge program ané =y to recuce its sicte by replacing those similar
parts by sutroutines. These sutrootines correspongd t= patterns.

For eample a few equations in Xarke's table pass througn samilar route in step
4, then we can use a proper pattern <O save calculation time. The equaticns 2-3+ and
2=55 in Kamke's table are such exxrles. Let us consicder the equaticn 2-189 as next
example. It is transformed to Bessel's equation (2-162). Our program can solve it
easily. However when we solve all of the 542 equaticn we w7ill meet them 54 times,
Therefore ~e acged the pattern 2-139 <0 cur program %0 save computaticn tite.

In a practical sense how can e £ind a pattern? Let us consider the easiest exa-
ple, equaticn 2-442. It has the fcrm f(x)y' '+xy'=y=0, When the equaticn 2-419 is
given tO us, let us look at it. It has the form : xzy"ccs(x)+(xzsin(x)-?_*<cCS(x))y'+
(2c0s (x) ~xsin(x) )y=0. After we divicded the both sides by ~(2c0s(x)=xsin(x)) we can
get f(x)*xz/ {(xsin(x)=2c0s (x)). The pattern 2-442 has a special solution x, so we can
easily solve it.

Then is it always possible tO Zetarmine whether a pattern matches to an ejua=
tion or not? The equation 2=77a has the form : y''+(f+g5)y'+(£'+f3)y=0, where { and @
are arbitrary functions of x. “hen we zried to match this pattern to y''+py'+iy=0,
we will see that f must be the soluzicn of a ccati's equaticn : flepf-fl-;=), 3ut
it is very di1fficulc %0 solve this 2zuacion, 1t 15 ecuivalent to our sroblenm.
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5. Sxar. les.

oxample 1. The following are almost raw print-out for e 2-Jésliu Ataa.ich.

(€3) showtima:true$ v
Time= § AseC. we use Y = ;
/¢ Septemser 10, 1063 °*/ X 2 2
(0 U -v) eu
Tosarile(pmain.fasl): the result 1§ ~c-ececaccsen . -.z. Y
4
PHATN FASL DSK SWATAN seing losded ax
Loading Oone 2 X H
Tinee 333 asec. ¢Y (%X -V)Y
(D4) DONE we 30)vg *== ¢ cc-caca ceeee 8 0
2 4
(CS) satch(exampl test); ox <
(C8) /° 344 °/ we use T « %E v
[
K344:X~4* OLPF(Y¥.X,2)*(EXP(2/K)-V¥~2)"Y=0; 2 -- 2
Tioee 72 msec. gY df (V -T)Y
2 the Fesult 18 =ce » =c - coveccsec- ¢ §
40y ux 2 2 v 2
(c8) E ==+ (2 ~V)Yves ar [ 4
2 oy
[19 2 - 2
4Y o (X-V)Y
(C7} /= som 2=102(28) =7 we salve —-; - ;. - ......;... Py
i an (9 3
Time= 348 moec.
(07) BATCH OGNE E I ASTERISR O g
{C8) Tode2(n3e4.0): { v)
\ ) t g -2 -1
2z 172 J yr [ 2] (x)
aY (% -vV)Y L ]
o 2019@ <~ vewe o § r v ]
2 4 [ Xt L
o ' { 2 ]
1
v {SQRT(X))
vouse T e~ 5. AS(V)
X the solution of the last eq. s ¥ {SQRT(XY)
2 2 3! 5. ABS(V)
sy ot 2T 2 ;:' ";:u:n of the first oq. 18
the result 13 <=« & cece o+ (%§ ~V)Yeod me= 14239 msec, -
"2 ' Xy (£
ar o8 8. ABS(V)
2 2. (os) . -
ay a% 2%
" 501vP ~== ¢ wee= o (X2 “¥)rep
[
ax
SOLVE FASL OSN MACSYI® detng lostad
Losaing gome
wouse T = 2 2
ay mmabavemleys_l(x)j.sm
z 2 -- 2 T . [
2y ar (v - Y general solution of the 3essel’'s equaticm
<he rosult 18 «; . -;- - .....:...-.. -g : XZY"OXY'*(xz-nZ)y-O.
[}
av
2 2 o= 1 2
47 o (% -v)vY
"0 18)1VQ ~== & ~ave & eg
2 x 4
3%




Exaple 2. Print-out for the 2-378a equation in Kamke's table.

(C8) /* 3784A,.522 %/

AB22:X%{X=1)*(X*1)=2° DIFF(Y.X. 2)=2*L(Xe1)®(X~2)* 'DIFF(Y X)~2%(X-1)"Y=0;
Time= 54 msec.

2
2dY ay
(D8) (X~ 1) X (X« 1) -;oz(x-;)x(xox)---z(x—t)v-u
[}3
ax
(C8) Yooe2(k522.0);
dy
3 [CR ) Bl
ey axX 38 4
-8 s0lve —~=~ - L ]
2 2 2 2
[+ X -1 X «2X X
']
w9 e ¥V & smeeseee
2
(x+1)
o
L 2
2y ax eV
mm.|‘“—-—--—.......°
2 -1 2
X =X [}
()4

2 2.
ey ax 2y
-8 $8lvg == o =veos & susees o )
-1 2
ax X =X
1t metched with k442
o use Y=UX

2
a 2 2 a vy
the result 18 = (= = =ese) ¢ e 2 0
& X X-3 2
@
(44
2 2 -
[\ [13
"0 301ve *=s = ovecan o
2 2
ax X -2X

the solutfaa af the first eq. s
Times 20291 msoc.

1
X (X1 (- 2 LOG(X) » X - ;) * L)

os
(08) p
(x +1)

Ixa.ple 3. Print-out for =he 2~430 eguation in Xamke's table.

(C8} €433:°OLFF(Y X, 2)°SIN(X) -2« OIFF(Y 2, 2)*SIN(X}°COS(X)
o(Ve(Ve1)oSIN(R)“2-N~2)°Y=0;
Timee 9] asec.

T ey av H ]
(08)  SIN (X) =~= o COS(X) SIN(K) == « (V (V o 1) SIN (X) =N } Y « 0
1 an

[1]
{C8) tocel(x430.0):

ot

ORI - TN g 4
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SOLVE FAS.
Loaging 2
ve use T °

the resul
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ve use Y

the resu’

we solve

Is ABSw
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av
1 cos(R) -~ 2 2 2
oy o v emsmm Ny
we solve T T aen) 2
o stv ()

SOLVE FASL DSK MACSYM neing losded

Loadiag doae
we use T » COS(X)

L4
2 2 1=~ 2 2 2 2
(R} AT ((T 1)V «(T = Vven)y
ulit i === ¢+ - L)
the res 3 2 N ;
[11 T -1 T 27 1
ar
H 2 X - 2 2 2 H |
'R B ((V +V)X -V -NVeN)Y
we s0lve === ¢ - -0
? 2 4 2
ax X -1 X -~ =1
1t mstched with k372
ABS(N)

-——amwe

2
wo use Y = U (X ~1)
2

ey 2 s 2
the result 18 ~== (X > 1) © 2 (ABS{R) + 1) == £ o« U (= V = V < AGS(N) (ABS(N) « 1)) = O
2 ox

4%
(34
2 (zaas(ey e2) R~ 2 z
av GX [V eV - ARS(N} - @) Y
- «g

w8 solve «== =
2 2 2
an £ -2 T -3

the typs 13 hypergeamerric
the solutios mey DO writtes 3y Riemenn’s P-fynctices s falldwe

( 1 -1 InF ]
| ald E - ABS(N) - AsS(N)  ASS(N) -V ; (%)
[ o 0 Ve ABS(N) ¢ 1)

46 you replace in ABS(W) =V T type y or o
is =2V - 1 a0 0008 integer? type y or &

13 2V +» 1 an 0dd integer? typeo y of »

ls ABS{N} & pasitive integer? typey oFf »
l; TV + 1 ppositive integer? type y o0 »
I3 ~2V -1 »positive tateger? typo y Or »
ABS(M)
g
ABS(N)
ox
mere ',_(v' B 12 the solugtom of Legeners's sq:(¥"2-1)%p’ +2%2°p’ -1 % wiet) pad

he solution of the first oy, to
Times 29504 ases.

ASS(W)
m(" —————
4

2
(07) (svemsmmnemas (P (¥, COS(N)))) (COS (M) ~ 1)
)nsm L
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6. The result of our experimen:.

There are 542 second order L QUE in Kamke's table. In these equations we have
39 equations which contain arhitrary functions and 11 equations which contain non
elementary transcendental functions. Our program solved 473 equations out of relevant
492 equations. The rate of solved equation is more than 96%. Our program solved 488
equations out of all the542 equaticns. The rate of solved equation without any rest-
riction is more than 90%.

‘“hen will we say "We could solve it." or "We could not solve it."? 'When the
most simplified equaticn is mroto-type ar has a solution that is representable bv
elementary functions or algerraic functions, the equation sas solved.

the type of last wr.eq.

total

classes . solved |unsolved
type the mies of equat. eqqati.onlmm| s0 l s1 [sz ] s3
0 constant coefficients or 8 0 18
s first order equatiom of y*'| !
o , X
$1 et we of 114 0 114 5 109
s 2 Riemann's equation 99 1 100 13 36
s3 ta =>siars " 118 0 118 26 66 26
s 4 weffm;gxts meadn 15 3 18 | s 1 1
! i
; Ccoefficients comtain f 4 5 |
s logarithmic funcrions 6, 4
coefficients cootals -
$ 68 erijonomewric funcmions 33 2 57 AL L
’ i
coefficients contain o !
s 7 lic £ X 7 0 7, 6 1
i !
ther equations with I :
538 goeffice?:nts in 2(x) ! 43 n 5 0 1e 5 9 10
i
sub total | 473 19 492 100 203 137 13
coefficients ccnzain i 2 5
S 9 rranscendental functicrs , n
coefficients contain
S10  any functions of x 13 25 39
sub total boas 3 50
|
|
]
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1ast equation aumder of sclutions representable oy
l e solution of the equation of
last [numbder eleme.nlal:_:eb gellzp  Kunmer Bessel{"'-’.u::a]:.egen Gaussé -attieu Jwars
class| of eq| func , func :".m:] : | ~ker j ~are ]
<0 100 | 100 | ' | | i
s1 203 37 I | 6 51 39 | !
52 157 | 68 9 3 i 36 | 41 |
B | 1 s 47
otal $73 253
Tadble 2.
pattern transfor- frequ- | pattern transfor- <frequ- pattern twansior- Iregu-
mation ency Tation ency mation ency
2- 41 2 | %7 wmed 1 | nea 1
- 54 y=exp(axiu 2 2-372 y=(x2-1)§u 1 y=(x-a)u 9
=55 yeep@ie s -339 X 3 veeap(ac)y 25
=78 y=/(E=1) 3 | 394 ceclogigmem) [YY:j;smE:; 3
2-120 (to Whittaker) 39 Z=3Z  y=(xma)u 28 v=log(x)u i
2-130  T=ix 2 2-183a (prowtype) ! -;:\',.—*b i
2-189 (o Bessel) 34 2-231a t=asinh(x) 1 =t 137
2-248 (proto-type) 3 2=sit (tO Whittaker) 28 {22;‘;‘&; 34
27269  y=x'u 1 -1 1 r=eX 1
2-297 teasinn(@q/& 4 | 27123 y=y/x 1 {,“:w”;‘;z:; 7
2=357  tw)xe Y 2-220 2 t=l0g (x) 1
2=353 <o=i/x 2 2=221 1 c=x(log(x)=1) 1
2-363 t’%(x*:"') 4 2~7T6a 1 Y= SIs(K)u 1

2
1
2-wit : xzy' *ex(2a+Zax) Y w(ata+t) 4-(4—1:2) +2abepik) m-(bz— ?—-) xz) y=Q.

Table 3.

In table 3 we can read how many times a pattern matched tO its equations or how

many times a ransfarmation was dne in cur experiment. For exasple a pattern 2-wit

which we canot fingd inKanke's table matched 0 28 equations, and twsin(x} ar
Sxx08{x) was done 44 tines in our experimant.




; 3
¢ equation reason for ejation reason for equation reason for 2
unsolved unsolved unsolved 1
g
' 2> 15 not implemented | 2330 too general 2-427 too special ;
A 2-19 ot implemented | 2341 not implemented 2-23a  two difficult "3
N _,
! 2127 too special 2-362 not implemented 2-115b too difficult 4
.' ﬁ
! 2-216 not inplemented 2=364 not implemented 2=115¢ too difficult 5
: %
: 2-261 ias not well=known| 2-399 not implementad 2-354b too gereral T
2-267 is not well-known| 2=407 too general .
3
2283 too special 2408 not inplemented 34
Table 4. The list of all the unsolved ecuations in s1-s8. = 1
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